Molecular dynamics simulations of hydrophilic pores in lipid bilayers.

نویسندگان

  • Hari Leontiadou
  • Alan E Mark
  • Siewert J Marrink
چکیده

Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance.

Molecular dynamics (MD) simulations have become a powerful tool to study electroporation (EP) in atomic detail. In the last decade, numerous MD studies have been conducted to model the effect of pulsed electric fields on membranes, providing molecular models of the EP process of lipid bilayers. Here we extend these investigations by modeling for the first time conditions comparable to experimen...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Evidence of Conducting Hydrophobic Nanopores Across Membranes in Response to an Electric Field

Electroporation, the application of electric fields to alter the permeability of biological membranes, has recently become a clinical tool for the electrochemotherapy treatment of various cancers. Current electroporation theory assumes that the membrane is permeabilized through the formation of conducting hydrophilic pores, stabilized by rearrangement of lipid head groups. Here we have performe...

متن کامل

Cation and anion transport through hydrophilic pores in lipid bilayers.

To understand the origin of transmembrane potentials, formation of transient pores, and the movement of anions and cations across lipid membranes, we have performed systematic atomistic molecular dynamics simulations of palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids. A double bilayer setup was employed and different transmembrane potentials were generated by varying the anion (Cl-) and cati...

متن کامل

Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).

Electroporation relates to a phenomenon in which cell membranes are permeabilized after being exposed to high electric fields. On the molecular level, the mechanism is not yet fully elucidated, although a considerable body of experiments and molecular dynamic (MD) simulations were performed on model membranes. Here we present the results of a combined theoretical and experimental investigation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 2004